Acta Crystallographica Section B Structural Science

ISSN 0108-7681

J.-E. Jørgensen^a* and R. I Smith^b

^aDepartment of Chemistry, University of Aarhus, DK-8000 Århus C, Denmark, and ^bISIS Neutron Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, England

Correspondence e-mail: jenserik@chem.au.dk

The structure of FeF₃, iron trifluoride, has been studied in the pressure range from ambient to 8.28 GPa by time-of-flight neutron powder diffraction. No structural phase transitions were found within the investigated pressure range, and least-squares refinements of the crystal structures were performed in the space group $R\overline{3}c$ for all recorded data sets. It was found that volume reduction is achieved through rotation of the FeF₆ octahedra, and the Fe-F-Fe bond angle decreases from 152.5 (2) to 134.8 (3)° within the investigated pressure range. A small octahedral strain was found to develop during compression, which reflects an elongation of the FeF₆ octahedra along the *c* axis. The zero-pressure bulk modulus

 B_{a} and its pressure derivative B'_{a} were determined to be

On the compression mechanism of FeF₃

1. Introduction

14 (1) GPa and 12 (1), respectively.

Many metal trifluorides have the VF₃ structure, including the title compound, FeF₃ (Leblanc et al., 1985). These compounds are composed of corner-sharing MF_6 octahedra and are therefore structurally related to perovskite-type compounds AMX₃, as well as to ReO₃ (Meisel, 1932). A non-distorted perovskite-type compound is cubic with the space group $Pm\overline{3}m$, while the VF₃ structure is rhombohedral with the space group $R\overline{3}c$. The X atoms of a non-distorted perovskite compound occupy a configuration of the cubic lattice complex J (International Tables for Crystallography, 1992, Vol. A), which corresponds to a sphere packing of type $8/3/c^2$ with eight nearest-neighbour contacts per sphere (Fischer, 1973). The $8/3/c^2$ sphere packing of the X atoms constitutes a framework containing cubo-octahedral voids occupied by A atoms and octahedral voids occupied by M atoms. The VF₃ and ReO3 structures are examples of cubic perovskite-related compounds with empty cubo-octahedral voids. The VF₃ structure is derived from the ReO₃ structure by coupled rotations of the octahedra around one of the cubic body diagonals as $R\overline{3}c$ is a subgroup of $Pm\overline{3}m$. The empty cubooctahedral voids enable relatively large tilts and rotations of the octahedra in the ReO₃ structure, and the degree of space filling of an $\frac{8}{3}/c^2$ sphere packing can therefore be increased by rotating the octahedra around one of the body diagonals of the cubic unit cell. The octahedral voids are maintained during the rotation, while the empty cubo-octahedral voids will distort and diminish their volume. This type of deformation of the $\frac{8}{3}/c^2$ sphere packing suggests the simplest conceivable compression mechanism for an MX_3 compound with the space group $R\overline{3}c$. Rotation of the MX_6 octahedra around the c axis will diminish the length of the *a* axis, and thereby the volume, while the length of the c axis is maintained during the rotation (assuming undistorted octahedra and hexagonal setting of the space group). The compressibility in the *a*-axis direction is

© 2006 International Union of Crystallography Printed in Great Britain – all rights reserved Received 15 May 2006 Accepted 1 August 2006 expected to be high as the restoring force is due to bending of the M-X-M bonds.

A 30° rotation around one of the body diagonals of the $Pm\overline{3}m$ structure causes the M-X-M bond angle in the cubic structure to decrease from 180 to 131.8° and leads to hexagonal close packing of the framework atoms X, at which point an abrupt decrease in the compressibility should occur. Further rotation of the octahedra leads to a 'super dense' sphere packing of the X atoms containing groups of three squeezed X atoms. Calcite, CaCO₃, is an example of such a compound as carbon is located between three squeezed O atoms.

The non-distorted $Pm\overline{3}m$ structure is optimal for an MX_3 compound from an electrostatic point of view, as shown by Herzig & Zemann (1993). However, experimentally it is found that many metal trifluorides, MF_3 , crystallize in the space group $R\overline{3}c$ with M-F-M bond angles in the range 131.8–180°. ScF_3 is an example of a trifluoride close to the ReO₃ structure with an Sc-F-Sc bond angle of 175.8°, and the space group was found to be R32 (Lösch *et al.*, 1982). RhF₃ represents the other extreme, with hexagonally close packed fluoride ions (Hepworth *et al.*, 1957). However, a small deviation from hexagonal close packing was later observed by Grosse & Hoppe (1987). Bonding effects such as the polarizability of the fluorine ions as well as covalency were suggested to be responsible for the deviation from the non-distorted $Pm\overline{3}m$ structure (Herzig & Zemann, 1993).

Sowa & Ahsbahs (1998) studied the two VF_3 -type compounds TiF_3 and FeF_3 by high-pressure X-ray diffraction and showed that a pressure-induced octahedral strain devel-

2. Experimental

The FeF_3 samples used in the present work were obtained from Alfa Aesar (catalogue number 11487). High-pressure

Figure 1

Selected part of the powder neutron diffraction pattern obtained from FeF_3 at 8.28 GPa. The crosses and the solid line represent the measured and calculated patterns, respectively. The lower curve shows the difference between observed and calculated intensities. From bottom to top, the vertical tick marks shown represent the Bragg reflection positions for FeF_3 , WC and Ni, respectively. The weak contributions to the pattern from WC and Ni arise from the anvils of the pressure cell.

time-of-flight neutron powder diffraction data were collected on the Polaris diffractometer at the UK pulsed spallation source ISIS using the Paris-Edinburgh pressure cell (Besson et al., 1992). A fully deuterated 4:1 methanolethanol mixture was used as the pressure-transmitting medium. The sample was contained within TiZr encapsulated gasket а (Marshall & Francis, 2002). The combined use of the methanolethanol mixture and the encapsulated gasket meant that nearhydrostatic compression of the sample was ensured up to pressures of at least 9 GPa. Nine powder patterns of FeF3 were recorded in the pressure range from ambient pressure to 8.28 GPa. The pressure was determined from a series of six measurements in the pressure range from ambient to 9.13 GPa on a mixed-phase sample with NaCl added as an internal stan-

Table 1				
Structural	parameters	for	FeF ₃ .	

Space group	$R\overline{3}c$ Fe	: 6(b)	000)) and	F: 18(e)	$(-x \ 0 \ 3/4).$
-------------	---------------------	--------	-----	--------	----------	-------------------

P (GPa)	a (Å)	c (Å)	x	$\begin{array}{c} 100 \langle u_{ m Fe}^2 \rangle \ ({ m \AA}^2) \end{array}$	$\begin{array}{c} 100 \langle u_{\rm F}^2 \rangle \\ ({\rm \AA}^2) \end{array}$	$R_{\rm wp}$
0.0001	5.1980 (5)	13.338 (2)	0.4122 (7)	0.24 (7)	0.92 (8)	0.0446
0.54	5.1144 (5)	13.347 (2)	0.3940 (7)	0.21(7)	0.69 (9)	0.0453
1.46	5.0094 (5)	13.397 (2)	0.3805 (7)	0.49 (9)	0.59 (8)	0.0460
1.98	4.9636 (5)	13.419 (2)	0.3744 (6)	0.56 (8)	0.43 (7)	0.0423
2.59	4.9190 (5)	13.431 (2)	0.3675 (7)	0.43 (7)	0.40(7)	0.0394
3.95	4.8400 (4)	13.441 (2)	0.3592 (7)	0.18 (6)	0.34 (6)	0.0367
5.57	4.7683 (5)	13.439 (2)	0.3527 (9)	0.33 (6)	0.33 (6)	0.0379
7.00	4.7202 (5)	13.411 (2)	0.348 (1)	0.21 (6)	0.32 (6)	0.0380
8.28	4.6866 (6)	13.368 (3)	0.344 (1)	0.24 (7)	0.38 (7)	0.0446

dard (Decker, 1971). The uncertainties of the determined pressures were estimated to be ± 0.02 GPa. Data analysis was performed by use of the Rietveld method using the *GSAS* suite of programs (Larson & Von Dreele, 1987).¹

3. Results and discussion

The recorded diffraction profiles of FeF₃ gave no indication of a structural phase transition within the investigated pressure range and therefore all Rietveld refinements were performed in the space group $R\overline{3}c$. Small scattering contributions from WC and Ni originating from the anvils of the pressure cell were also included in the Rietveld refinements. Fig. 1 shows the observed, calculated and difference (obs – calc) powder neutron diffraction profiles of FeF₃ at 8.28 GPa, and the refined structural parameters at each of the measured pressures are given in Table 1. For all pressures up to 8.28 GPa the parameters in Table 1 were refined using data collected from the pure FeF₃ loading. The structural parameters for FeF₃ obtained at ambient pressure are in fair agreement with earlier results obtained by Leblanc *et al.* (1985).

Fig. 2 shows the a and c lattice parameters and the relative volume V/V_o derived from data collected from the mixed FeF₃/NaCl sample and plotted as a function of pressure. The a lattice parameter decreases smoothly and it is reduced by 9.8% when the pressure is increased from ambient to 8.28 GPa. The c lattice shows much less pressure dependence on an absolute scale, but its pressure dependence is more complicated. It increases by 0.77% to its maximum value at 4 GPa and decreases again at higher pressures. The pressure dependence of the c axis is small but statistically significant, although the estimated standard deviations shown in Fig. 2(a)might be underestimated, as is often the case for Rietveld refinements. Increases in the c lattice parameter during compression were also observed in earlier studies of TiF₃ and FeF_3 (3.3 and 1.1%, respectively) by Sowa & Ahsbahs (1998). In the case of CrF_3 , the *c* lattice parameter increased by 0.17%

and obtained its maximum value at 3.43 GPa (Jørgensen *et al.*, 2004). The increase in *c* is associated with small distortions of the FeF₆ octahedra as explained below, and the pressure dependence of the *a* and *c* lattice parameters for CrF₃, TiF₃ and FeF₃ show that volume reduction of these compounds takes place through rotation of the octahedra around the *c* axis.

The unit-cell volumes derived from the recorded diffraction data on the mixed FeF₃/NaCl sample were used for the determination of the bulk modulus B_o and its pressure derivative B'_o for FeF₃ by use of the third-order Birch–Murnaghan equation of state

$$P = \frac{3}{2}B_o \left(x^{-7/3} - x^{-5/3} \right) \left[1 - \frac{3}{4} (4 - B'_o) \left(x^{-2/3} - 1 \right) \right], \quad (1)$$

where x denotes the volume ratio V/V_o (V_o being the volume at zero pressure), while B_o and B'_o are the isothermal bulk modulus at ambient pressure and its pressure derivative, respectively. The least-squares fit to the measured data yielded the following value for the bulk modulus: $B_o = 14$ (1) GPa and $B'_o = 12$ (1). In comparison, the values $B_o = 29.2$ (4) GPa and

Figure 2

Lattice parameters *a* and *c* (*a*) and the relative volume $V/V_o(b)$ plotted as a function of pressure. The solid curve for the relative volume represents a fit to the third-order Birch–Murnaghan equation of state with bulk modulus $B_o = 14$ (1) GPa and its pressure derivative $B'_o = 12$ (1) as described in the text. The estimated standard deviations of *a*, *c* and V/V_o are smaller than the plotted symbols for most of the points, and the solid curves for the lattice parameters *a* and *c* are guides to the eye.

¹ Supplementary data for this paper are available from the IUCr electronic archives (Reference: AV5063). Services for accessing these data are described at the back of the journal.

 $B'_o = 10.1$ (3) were obtained for CrF₃ (Jørgensen *et al.*, 2004). The low values of B_o obtained for both compounds show that CrF₃ and FeF₃ are relatively soft compounds. Compression of FeF₃ and CrF₃ is achieved through bending of chemical bonds, which yields larger compressibilities than when compression takes place through compression of chemical bonds, as discussed by Jørgensen *et al.* (2004). The obtained B'_o value of 12 (1) for FeF₃ is reasonable as most materials have values between 2 and 12 with soft materials having large B'_o values as opposed to the normal typical $B'_o \simeq 4$ results.

Fig. 3 shows the FeF₃ structure at ambient pressure and 8.28 GPa. Symmetry allows for two independent F-F distances, d_1 and d_2 , within each FeF₆ octahedron but only one Fe-F distance. The short and long F-F distances d_1 and d_2 are found within and out of the basal plane, respectively. Figs. 4 and 5 show the structural changes of FeF₃ during compression. From Fig. 4(*a*) it is seen that the structural changes of the FeF₆ octahedra are minor during compression. However, d_1 and d_2 are seen to become significantly different at pressures above 0.54 GPa, and d_2 undergoes very little change up to 2.6 GPa, while d_1 decreases significantly in the same pressure range. This result indicates that the FeF₆ octahedra are becoming squeezed in the *ab* plane, while their dimension along the *c* axis is almost unchanged. Furthermore, d_1 exhibits a change in slope at 2.6 GPa, while d_2 starts decreasing at this

Figure 3

The FeF₃ structure at ambient pressure and 8.28 GPa viewed along the *c* axis. Symmetry allows for two independent F–F distances d_1 and d_2 within each CrF₆ octahedron, as marked on the lower figure. The octahedral strain is due to an elongation of the octahedra along the *c* axis with $d_1 = 2.663$ (5) Å and $d_2 = 2.707$ (2) Å at 8.28 GPa. The hexagonal unit cell is shown with solid lines.

pressure. d_1 and d_2 are reduced by 2.0 and 0.50%, respectively, while the Fe-F bond is shortened by 1.2%. The distortion of the FeF₆ octahedra can be expressed in terms of an octahedral

Figure 4

The Fe-F bond length (\bullet) , F-F distances $(d_1 \bullet, d_2 \bullet)$ (a) and octahedral strain ε (\bullet) (b) plotted as a function of the pressure. The octahedral strain is seen to increase up to about 6 GPa and remains almost constant above this pressure. The increased octahedral strain reflects an elongation of the octahedra along the *c* axis. Solid lines are guides to the eye. The insert shows the $3^{1/2}c/3a$ ratio plotted as function of the pressure.

Fe–F–Fe angle (•) and rotation angle φ (•) of the octahedra plotted as a function of pressure. A structure with hexagonally packed fluoride ions corresponds to an Fe–F–Fe angle of 131.8°. The dashed line is a guide to the eye, while the solid line represents a fit to a power law as described in the text.

strain, ε defined as $\varepsilon = (d_2 - d_1)/(d_2 + d_1)$ and shown in Fig. 4(b) as a function of pressure. ε increases up to a pressure of 5.6 GPa and saturates at an average value of $ca 8.4 \times 10^{-3}$ at higher pressures. The increasing octahedral strain reflects an increasing rhombohedral distortion of the FeF₆ octahedra as they become elongated along the c axis. The increasing octahedral strain is also consistent with the pressure dependence of the c axis described above. Analysis of the results of Sowa & Ahsbahs (1998) for TiF₃ and FeF₃ shows that ε also increases linearly up to about 3 GPa and saturates at values of 1.4×10^{-2} and 6.3×10^{-3} for TiF₃ and FeF₃, respectively. No structural refinement was performed in this high-pressure diffraction study of TiF₃ and FeF₃, and d_1 and d_2 were therefore calculated under the assumption that the metalfluorine bond length is independent of the pressure. The ε values for these compounds should therefore be considered as lower limits for the octahedral strain, as they will increase if the metal-fluorine bond length is shortened as observed in this study. The pressure-induced octahedral strain was attributed to repulsive interactions between the cations in the cases of FeF₃, TiF₃ and NaSbF₆ (Sowa & Ahsbahs, 1998; Sowa, 1997). The Fe-F-Fe bond angle, shown in Fig. 5, decreases from 152.5 (2) to 134.8 (3) $^{\circ}$, showing that the F atoms are almost hexagonally close packed at the highest measured pressure of 8.28 GPa (the Fe-F-Fe bond angle is 131.8° in a structure with hexagonally close-packed F atoms). This result again shows that volume reduction is achieved through rotation of the FeF_6 octahedra around the *c* axis.

The rotation angle φ of the FeF₆ octahedra around the *c* axis is calculated from the fluorine *x* coordinates given in Table 1 and shown as a function of pressure in Fig. 5. φ was calculated according to the expression given by Carlson *et al.* (2000). $x = \frac{1}{2}$ corresponds to the cubic *Pm*3*m* structure ($\varphi = 0^{\circ}$), while the rhombohedral *R*3*c* structure with hexagonally close packed F atoms within the basal plane is obtained for x = 1/3 or 2/3 ($\varphi = \pm 30^{\circ}$). From Table 1 it is seen that *x* reaches a value of 0.3441 (1) at *ca* 8.28 GPa (corresponding to $\varphi = 28.5^{\circ}$), which shows that the F atoms are almost hexagonally close packed

Figure 6

Positional parameter x of the F atoms in FeF₃ (\blacktriangle) and CrF₃ (\diamond) versus axial ratio *c/a*. The solid line corresponds to the parameters for an ideal 8/3/*c*2 sphere packing in the space group $R\overline{3}c$ as explained in the text.

within the basal plane at this pressure. The $3^{1/2}c/3a$ ratio for an $R\overline{3}c$ structure with hexagonally close packed F atoms corresponds to the conventional c/a ratio for a hexagonal sphere packing, which is 1.633. The insert of Fig. 4(b) shows that $3^{1/2}c/3a$ reaches the value of 1.633 at 6.3 GPa, which is very close to the pressure at which the rhombohedral strain ε saturates, and increases to a value of 1.650 (9) at 9.13 GPa. The fact that $3^{1/2}c/3a$ exceeds 1.633 indicates that the F atoms are becoming slightly squeezed in the *ab* plane above 6.3 GPa, although x is slightly larger than 1/3. The proximity to hexagonal close packing of the F atoms at the highest measured pressure suggests that the bulk modulus of FeF₃ should increase considerably at higher pressures. However, the accessible pressure range was not large enough to observe an abrupt enhancement of the bulk modulus as was observed at 38 GPa for the $R\overline{3}c$ phase of ReO₃ (Jørgensen *et al.*, 2000).

The pressure dependence of φ is shown in Fig. 5, and it is seen that φ obeys the power law $\varphi \propto (P - P_c)^{\beta}$, with $\beta =$ 0.139 (5) and $P_c = -0.20$ (3) GPa over the entire range of measured pressures. A similar analysis of the data for FeF₃ and TiF₃ reported by Sowa & Ahsbahs (1998) yielded β = 0.19 (1) for both compounds, while $\beta = 0.121$ (9) was found for CrF₃ (Jørgensen et al., 2004). Furthermore, the rotation angle of the Nb(O,F)₆ octahedra in NbO₂F was found to obey the above-described power law with $\beta = 0.21(1)$ or 0.14(1) depending on the method of calculation (Carlson et al., 2000). Several perovskite compounds undergo temperature- or pressure-induced structural phase transitions in which the rotation angle of the octahedra is the order parameter. The pressure or temperature dependence of the low-symmetry phase of these compounds resembles the compression of FeF₃ as the $R\overline{3}c$ structure of this compound can be derived from a hypothetical cubic $Pm\overline{3}m$ phase by rotation of the FeF₆ octahedra around one of the cubic body diagonals. The rotation angle φ is then playing the role of the order parameter. The above-mentioned exponents for CrF₃, FeF₃ and TiF₃ are surprisingly low in comparison with exponents obtained for other perovskite compounds undergoing structural phase transitions in which the rotation angle of the octahedra is the order parameter, as discussed by Jørgensen et al. (2004).

The compression of CrF_3 and FeF_3 are compared and described in terms of deformation of the 8/3/c2 sphere packing in Fig. 6. The 8/3/c2 sphere packing may, in space group $R\overline{3}c$, be deformed without losing contacts if the following condition is fulfilled (Sowa, 1997)

$$x = 1/2 \pm \left[c^2 / (72 a^2) - 1/12\right]^{1/2}.$$
 (2)

The limiting cases are the cubic ReO₃ structure type and hexagonal close packing of the spheres. The ReO₃ structure type is obtained for x = 1/2 and $c/a = 6^{1/2} \simeq 2.449$. Each sphere has eight contacts in this case. Hexagonal close packing is obtained for x = 1/3 and $c/a = 8^{1/2} \simeq 2.828$, and the number of contacts per sphere has in this case increased to the limiting number of 12. From Fig. 6 it is seen that FeF₃ is described by the sphere packing model at the two lowest measured pressures (lowest c/a values). The deviation from the theoretical curve increases at higher pressures. CrF₃ shows a smaller deviation from the theoretical curve and this compound is therefore better described by the sphere packing model. However, both compounds show larger values of c/a than 2.828, which is the maximum value that can be obtained for an 8/3/c2 packing of hard spheres in space group $R\overline{3}c$. The large values of c/a reflect the octahedral strain which develops in both compounds at high pressure.

4. Conclusion

FeF₃ is a relatively soft compound, with bulk modulus $B_o = 14$ (1) GPa. The present high-pressure neutron powder diffraction study has shown that compression of FeF₃ takes place through rotation of the FeF₆ octahedra around the *c* axis, with the result that the F atoms were found to be almost hexagonally close packed at *ca* 8 GPa. No structural phase transitions were observed within the investigated pressure range.

The rotation angle φ of the FeF₆ octahedra obeys the relationship $\varphi \propto (P - P_c)^{\beta}$, with $\beta = 0.139$ (5) and $P_c = -0.20$ (3) GPa. The FeF₆ octahedra undergo only small deformations during compression, and the changes in the Fe-F bond lengths and the short and long F-F distances within the octahedra are found to be minor (1.2, 2.0 and 0.50%, respectively). Nevertheless, the FeF₆ octahedra were seen to develop a small but significant rhombohedral strain during compression as they become elongated along the *c* axis.

Finally, it has been shown that the arrangement of the F atoms in FeF_3 and CrF_3 during compression is reasonably well

described by the deformation of a sphere packing of type $\frac{8}{3}c^2$.

This work was supported by the EU Framework Programme 5 'Access to ISIS Neutrons'. Mr D. J. Francis is acknowledged for providing technical assistance during the operation of the Paris–Edinburgh pressure cell.

References

- Besson, J. M., Nelmes, R. J., Hamel, G., Loveday, J. S., Weill, G. & Hull, S. (1992). *Physica B*, 180–181, 907–910.
- Carlson, S., Larsson, A.-K. & Rohrer, F. E. (2000). Acta Cryst. B56, 189–196.
- Decker, D. L. (1971). J. Appl. Phys. 42, 3239-3244.
- Fischer, W. (1973). Z. Kristallogr. 138, 129-146.
- Grosse, L. & Hoppe, R. (1987). Z. Anorg. Allg. Chem. 552, 123-131.
- Hepworth, M. A., Jack, K. H., Peacock, R. D. & Westland, G. J. (1957). Acta Cryst. 10, 63–69.
- Herzig, P. & Zemann, J. (1993). Z. Kristallogr. 205, 85-97.
- Jørgensen, J.-E., Marshall, W. G. & Smith, R. I. (2004). Acta Cryst. B60, 669–673.
- Jørgensen, J.-E., Olsen, J. S. & Gerward, L. (2000). J. Appl. Cryst. 33, 279–284.
- Larson, A. C. & Von Dreele, R. B. (1987). Report No. LAUR 86-748. Los Alamos National Laboratory, New Mexico, USA.
- Leblanc, M., Pannetier, J., Ferey, G. & de Pape, R. (1985). *Rev. Chim. Miner.* **22**, 107–114.
- Lösch, R., Hebecker, Ch. & Ranft, Z. (1982). Z. Anorg. Allg. Chem. 491, 199–202.
- Marshall, W. G. & Francis, D. J. (2002). J. Appl. Cryst. 35, 122-125.
- Meisel, K. (1932). Z. Anorg. Allg. Chem. 207, 121-128.
- Sowa, H. (1997). Acta Cryst. B53, 25-31.
- Sowa, H. & Ahsbahs, H. (1998). Acta Cryst. B54, 578-584.